n5321 | 2025年6月7日 10:04

Tags: CAE


In Memoriam

Ray W. Clough

Professor of Civil Engineering, Emeritus

UC Berkeley
1920-2016

In the summers of 1952 and 1953, Professor Clough was employed at a dynamics analysis research group with the Boeing Aircraft Company in Seattle. This work involved modeling the delta wing with three-dimensional strut elements (connected to two joints) and the wing surfaces with triangular or quadrilateral membrane elements (connected to three or four joints). His research involved the development of elements that accurately predicted displacements compared to experimental results. Boeing referred to this work as the Direct Stiffness Method, which was a standard method of structural analysis where the joint displacements were the unknowns.

In 1956, Ray, Shirley, and three small children spent a year in Norway at the Ship Research Institute in Trondheim. The engineers at the institute were calculating stresses due to ship vibrations in order to predict fatigue failures at the stress concentrations. This is when Ray realized his element research should be called the Finite Element Method which could solve many different types of problems in continuum mechanics. Ray realized the FEM was a direct competitor to the Finite Difference Method. At that time FDM was being used to solve many problems in continuum mechanics.  His previous work at Boeing, the Direct Stiffness Method, was only used to calculate displacements not stresses.

In the fall semester of 1957, Ray returned from his sabbatical leave in Norway and immediately posted a page on the student bulletin board asking students to contact him if they were interested in conducting finite element research for the analysis of membrane, plate, shell, and solid structures. Although Ray did not have funding for finite element research, a few graduate students who had other sources of funds responded. At that time, the only digital computer in the College of Engineering was an IBM 701 that was produced in 1951 and was based on vacuum tube technology. The maximum number of linear equations that it could solve was 40. Consequently, when Ray presented his first FEM paper in September 1960, “The Finite Element Method in Plane Stress Analysis,” at the ASCE 2nd Conference on Electronic Computation in Pittsburgh, Pennsylvania, the course-mesh stress-distribution obtained was not very accurate. Therefore, most of the attendees at the conference were not impressed.

After the improvement of the speed and capacity of the computers on the Berkeley campus, Professor Clough’s paper was a very fine mesh analysis of an existing concrete dam. The paper was first presented in September 1962 at a NATO conference in Lisbon, Portugal. Within a few months, the paper was republished in an international Bulletin, which had a very large circulation, as “Stress Analysis of a Gravity Dam by the Finite Element Method”, (with E. Wilson), International Bulletin RILEM, No. 10, June 1963. 

The Lisbon paper reported on the finite element analysis of the 250-foot-high Norfork Dam in Arkansas, which had developed a vertical crack during construction in 1942. The FEM analysis correctly predicted the location and size of the crack due to the temperature changes and produced realistic displacements and stresses within the dam and foundation for both gravity and several hydrostatic load conditions. Because of this publication, many international students and visiting scholars came to Berkeley to work with Professor Clough.  Also, he freely gave the FORTRAN listing of their finite element analysis computer program to be used to evaluated displacement and stresses in other two-dimensional plane structures with different geometry, materials and loading. Therefore, professional engineers could easily use the powerful new FEM to solve for the stress distributions in their structural engineering problems in continuum mechanics. However, he did not capitalize on his success in the development of the FEM. He returned to the task of building the earthquake engineering program at Berkeley – the task he given when he was first hired in 1949.